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AMtraet--The effect of the virtual mass in accelerating two-phase flow was studied for various 
nozzle/diffuser flows. It was found that the final results were insensitive to virtual mass effects, but the 
numerical stability and efficiency was greatly improved. An analysis of the eigenvalues of the mathematical 
systems shows that virtual mass models improve numerical stability and efficiency by changing the nature 
of the eigenvalues. 

INTRODUCTION 
The ability to accurately and efficiently evaluate transient two-phase flow phenomena is needed 
to understand many processes of practical concern. For instance, nuclear reactor safety studies 
and the pressure-relief capabilities of many chemical reactors, require this ability. 

Previous studies have indicated that numerical instabilities are frequently encountered when 
two-fluid models are numerically evaluated. These numerical problems have been shown 
(Bour6 1975) to be related to the modelling of the phasic interaction terms, and the resultant 
complex nature of the mathematical characteristics (Ramshaw & Trapp 1978). 

Two distinct approaches are currently being taken to address this problem. One approach is 
to introduce so-called "numerical viscosity" into the numerical algorithm, to damp out high 
frequency instabilities which may occur due to imprecise modelling. This approach is an 
outgrowth of the sin#e-phase gas dynamic techniques originally developed at the Courant 
Institute of NYU. It is currently being used in TRAC and other two-fluid digital computer codes 
being developed at LASL (Amsden & Harlow 1978). While this approach allows one to efficiently 
compute, the physical model veing evaluated is not generally alid, and thus inaccurate evaluations 
may result for some cases of practical concern. 

The other, and most technically satisfying approach, is to accurately model the phasic 
interaction terms in the two-fluid model. These models consist of phasic mass, momentum 
and energy transfer laws. Of these interaction terms, the most important, from the point of view 
of numerical stability, are the momentum transfer terms, since they basically determine the 
characteristics of the mathematical system under consideration. 

The most important momentum transfer laws are known (Ishii 1975) to be due to mass 
transfer effects, interfacial drag and virtual mass effects. The study presented in this paper was 
directed toward understanding the effect of virtual mass on the numerically stability of 
accelerating two-phase flows. 

DISCUSSION 

In order to simplify, and focus, this study, the special case of adiabatic air/water bubbly 
flow, through nozzles and diffusers, was considered. For this case, there is no mass transfer and 
thus all we need model are the interfacial drag (Fa) and the virtual mass (F~=) forces. The 
latter force (Fvm) being due to the acceleration of the vapor bubbles relative to the liquid phase. 

DETAILED NUMERICAL ANALYSIS 

Following previous investigators (Wallis et al. 1976), one can assume a string of non-interacting 
bubbles flowing through a nozzle or diffuser. This assumption allows us to drop the temporal terms, 
since each bubble in the string will have the same velocity when it reaches a particular axial 
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location. The appropriate, one-dimensional momentum equations for the accelerating liquid and 
vapor bubble are, respectively, 

dUL _ (1_ a).~z _ (1 + M L - F , .  (1 - Ct )pL UL ~ = -- Ot )pL g COS (~ , [1] 

due dn 
- ape g cos ~b + Me OlpGU G ~ = -- Ot la~ [2] 

where a is the volumetric vapor fraction; Pk is the density of phase-k; Uk is the axial phase 
velocity; p is the pressure; 4> is the angle between the flow direction and the vertical axis; Mk is 
the volumetric interracial force of phase-k; and Fw is the wall shear force per unit volume, 
which is defined by: 

1 
Fw = " ~ n  f pL ULIULI " [3] 

The interfacial forces being considered in this analysis are defined as: 

l/4wDt, 2 .., . 3 ~ (ua - UL)lUe - ULI F .  =  waue - u L ) t u e  - = C d  [41 

ML=-Me ~-ol[F d + Fvm], [5] 

Fora = pLCvmavm, [6] 

where Dn is the hydraulic diameter of the flow channel; f is the friction factor; Fd and Fore are 
the interracial drag and virtual mass force per unit bubble volume, respectively; Db is the 
bubble diameter; Cd is the interfacial drag coefficient; C~m is the virtual volume coefficient; a~,, 
is the steady-state virtual mass acceleration in the axial direction and A is an arbitrary 
parameter to be determined experimentally. The most general form of the one-dimensional 
virtual mass spatial acceleration term is given by (Drew et al. 1979) 

d[Uc~ -- UL] ~_(Ue _ UL){(A _ 2)~Z + (1 - A)_~_zL}. arm = Ue dz 

Equations [1] and [2] can be rewritten as, 

[7] 

dp dUL ML Fw 
=pLUL-'~z+OLgCOS& (I-a------) ~ (1 a-------)' [81 dz 

dp due , Me [9] 
dz = peue ~ z  * p~ g cos 4, - T 

Subtracting [9] from [8], to eliminate the pressure gradient, 

duo dUL a- ML ~ Fw 
p~ue '~z  =pLUL-'~---(pL--pe)gcos'b ( l - a )  b + ( l - - : a ) '  [10] 

or using [5], 

= dUL + du~ 1 {OLUL " ~  (pL -- PG) g COS ~b -- (Fd -t- Fvra) dz pou~ (l-a) + (1F---*a)} " [111 
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For the cases of interest here, the acceleration of individual bubbles, the void fraction is quite 
small and thus, [11] can be approximated by, 

d ~ L  COS - -  Fw}, du....~= I {pLUL._d~+(pL_po)g rk Fa-F,m+ 
dz pGua 

[12] 

where we have assumed, 
a ~ 1. [131 

Equations [11], [3] and [4]-[7] comprise the set of equations which must be integrated to 
determine the axial velocity of the bubbles, uo(z). 

Before numerical integration can be accomplished, one must have an expression for the 
spatial acceleration of the liquid, duL/dz, in [12]. 

For a conical-shaped nozzle with a linear convergence angle, the radius R(z) is given by, 

R(z) = RI - H (RI - R2), [14] 

where R2 <RI and H is the length of the nozzle (or diffuser). 
For the case of interest here, we can neglect the effect of the bubbles, and the liquid 

continuity equation becomes, 

UL(Z) = Q/[~R2(z)], [ 15] 

where Q is the volumetric flow rate of the liquid phase. Thus, [15] and [14] yield, 

dUL 2Q dR 2Q ( R I - R 2 )  
d - 7  = H [16]  

Similarly, for a conically-shaped diffuser of linear divergence angle. 

R(z) = R I  + H ( R 2 - R , ) ,  [171 

where R2 > R1. The corresponding expression for the spatial acceleration of the liquid phase is, 

dUL 2Q dR 2Q (R2-RI) 
= - = -  H 

[is] 

Diffuser/nozzle geometries typical of those analyzed are illustrated in figure 1. 
These equations were programmed and numerically integrated, using stiff option of the GEAR 

algorithm (Gear 1971). For these evaluations, a typical bubble diameter of 0.15 cm was used. 
For wall shear, a Moody friction factor value of 0.02 was used (i.e. f =0.02); while for 
interracial shear, a standard bubble drag coefficient (Ca) was used (Elliot & Weinberg 1968). 
This latter model is given, for 0.1 <Re <-2 x 104, 

Ca = 26.33765 Re-°'8893+°'°3417 In Re+0.001443(In Re) 2 [191 

where the bubble Reynolds number is defined as, 

Re  = pLDbIU~ -- ULI 
pLL 
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Figure I. Diffuser/nozzle geometries. 

For the numerical evaluations, the virtual mass model normally used a virtual volume 
coefficient (C,,.) for a perfect sphere, Corn = 112, although this was varied parametrically. 
Various models for the acceleration term (a . . )  were also used. In particular, several values for 
the parameter A in the most general model (Drew et al. 1979) were chosen, and the Wallis (1969) 
model was evaluated. This latter model is a degenerant case of [7], and assumes a spatial 

acceleration of the form, 

a~,. = u c d [ u ~  - uL] . [20] 
t l Z  

Figure 2 shows the results of a hypothetical nozzle experiment for vertical co-current 

upflow (cos ~b = l). It can be seen that one cannot easily discriminate between the various arm 
models. That is, for the general arm case, with A = 1 and A = 2, and the Wallis model, very little 
difference in uG(z) was evident. Moreover, even when the virtual mass force was set to zero 
(Cvm = 0), the answer was approximately unchanged; although, in this and subsequent cases, 
the numerics were much less stable and thus integration required a much longer computer run 

time (about 40 times longer). 
Figure 3 shows similar results for a diffuser operated in co-current upflow. Figure 4 shows 

the results for co-current flow through a horizontal (cos 4) = 0) nozzle. Some differences can be 
noted between the various virtual mass force acceleration models; however, these differences 

are again quite small. 
Figure 5 shows the results of analyzing co-current downflow (cos tk = 1) in a nozzle. It is 

interesting to note that, unlike the previous cases, the buoyancy term causes the vapor velocity 
to initially be less than the liquid velocity. Since the vapor phase (bubble) has less inertia than 
the liquid phase, it will accelerate more and, as expected, the vapor velocity will become greater 
than the liquid velocity. There is a systematic difference noted between the case with no virtual 
mass (C~m = 0) and the other cases; however, this difference is not large. 

The final situation investigated was a counter-current vertical (cos (k = 1) diffuser, in which 
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Figure 3. Diffuser upflow. 

the liquid is flowing down and the vapor is flowing upwards. In principle, this arrangement 
allows one to "freeze" the bubble in space. As can 10e seen in figure 6, the effect of virtual mass 
is again quite small; however, for the case in which we had no virtual mass force (Co., = 0), not 
only was it more costly to run the problem, but we could not even run the complete problem 
using GEAR. Thus, even though the virtual mass force may be small, it can be quite important 
to the numerical evaluation algorithm. 

S I M P L I F I E D  A N A L Y S I S  

The small differences in u6 calculated from the various virtual mass acceleration (arm) 
models indicate that the virtual mass effect is insignificant for the flow conditions in question 
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(i.e. diffuser/nozzle flows). In order to better appraise the importance of vapor phase inertial 
effects, a simplified analysis of a diffuser/nozzle flow was done ignoring virtual mass, wall shear 
and terms in the vapor phase momentum equation involving p~ (i.e. bubble inertia and density 
head). That is, we assume, 

PL ~ Pc,. [21] 

The resultant momentum equation, [12], thus reduces to 

dUL -I- 
PLUL "~Z PL g COS 4) -- Fd = 0 .  [22] 
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Figure 6. Diffuser counter-current flow. 

Using [4], [22] becomes, 

le dUL ~ (U I/L) lU G _ L"~'=--gCOS~)+ Cd ~ it d • [23] 

In [23], we are essentially balancing the pressure gradient with the buoyancy force and 
interfacial drag. Rewriting [23] in the form, 

4 I~ [ UL dUL + g COS •}, 
tuG - u~)luG - ud = ] G  t - E  [24] 

and defining a new quantity, ~ ,  where 

4/~, fu ¢)=]G[ L-~z~ +g c°s*}" [25] 

Equation [24] becomes, 

( U  G - -  I, IL ) IU  G - -  ULI = ¢~ , [26] 

or 

(uL - uG)luo - uLl = -~ . [27] 

If uc > uL, [26] yields, 

= ur. + (l~l) u2 . [28] 

If UL > U(;, [27] yields, 

u o  = uL - (IOI) '/2 . [29] 
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Equations [28] and [29] give simple, exact, analytical results. When the bubble velocity, uo(z) ,  is 
determined from [28] or [29], in which the appropriate expression for nozzle flow, [16], or 
diffuser flow, [18], is used, the results closely approximate those obtained in the previous, more 
exact, analysis. 

Figures 2 and 3 show the calculated bubble velocity in co-current nozzle upflow and diffuser 
upflow, respectively. In both cases, the simplified model is just as good in evaluating the bubble 
velocity as the more involved models. We can thus conclude that pressure gradient, buoyancy, 
and drag are the dominant forces on a single bubble in nozzle and diffuser flows. 

When buoyancy is absent, as in the case shown in figure 4 for co-current flow through a 
horizontal nozzle, the force balance between the pressure gradient and drag is adequate to 
describe the motion of a single bubble accelerating through a horizontal nozzle. Indeed, the 
bubble velocities calculated from the simplified analysis are almost identical to those calculated 
numerically. 

The simplified analysis is compared with the virtual mass acceleration models in figure 5 for 
co-current downflow in a nozzle. The bubble velocity obtained from the simplified model is now 
seen to deviate somewhat more from the other models, although the general trend in relative 
velocity, u~ - uL, is the same as before. 

The last case studied was for counter-current flow in a vertical diffuser. As shown in figure 
6, in the simplified case the bubble is rising somewhat faster than the bubble having inertial 
effects. The reason is quite obvious; in the more realistic models (with bubble inertia and virtual 
mass), the bubble is being slowed down by its own inertia and the added inertia due to virtual 
mass. 

We have found that simplified exact analytical models, which do not involve virtual mass 
effects, can accurately calculate bubble trajectories. These models confirm the previous 
numerical results, which indicated that, for the cases considered here, virtual mass effects have 
little effect on the answer; although they have a pronounced effect on numerical stability and 
efficiency. 

NUMERICAL STABILITY CONSIDERATIONS (STEADY STATE) 

In order to understand this paradox, it is convenient to consider a first order, ordinary 
differential equation given by, 

d_ZY 
dz = f(y' z) [30a] 

where 

y(0)=y0. [30bl 

If the initial condition is perturbed slightly by an amount 6, we obtain the perturbed differential 

equation, 
du 
dz /xu [31a] 

where 

u(0)=6 

u = Ay, and for the most general case of a system of differential equations, the /z are the 
complex eigenvalues of the Jacobian matrix, (0f(y, z)/0y). Using forward differencing, [31a] 

becomes, 

u.+l = u. + Azt~u. [32a] 
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where 

Uo=8 [32b] 

The solution to [32a] and [32b] is given by (Sokolnikoff & Redheffer 1958), 

u,, = (1 + Az~)"8. [33] 

The criterion for absolute stability is that the solution function of the perturbation, u,, will be 
no larger than 181. For this case, [33] implies absolute stability within a unit circle, centered at 
(-1, 0), in the complex Az/~ plane. That is, where 

I1 +Az~I < 1. [34] 

It is significant to note that the real part of p. must be negative for this criterion to be satisfied. 
The criterion of absolute stability is too restrictive for many practical purposes. For 

instance, if the function y(z) increases with z, then one should be able to tolerate a larger 
perturbation, u(z), in the total solution, y(z)+ u(z). Gear (1971) has proposed various other 
stability criterion. In our case, it is his criterion for an "accurate" numerical solution which 
imposes the observed restrictions on the spatial step size, Az. 

The stiff option of the Gear algorithm (Gear 1971), which we used in the study, automatic- 
ally adjusts the step size to achieve an "accurate" solution. If, as shown schematically in figure 
7, the system's eigenvalue (/~) is such that the product Az/~ is at point A, then the Gear code 
would automatically reduce the step size (Az) to bring the Az/~ product within region R2 (e.g. to 
point B). Naturally the smaller the step size, the longer the run time to complete a given 
problem. 

REGION-R~ 
ABSOLUTELY 
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rA 
/ Im(AZ~) 

/ 
i~ +o 

/ Z 
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;K 

Figure 7. GEAR code stability map. 
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In our specific case, the eigenvalue (/z) is given by 

OF,~ 3~ PL, 3pL,  ., ,OCd + i . . d U L  
± a / _  auo 
-Tuc - o~u~ + pL C~m{U~ + (a - 2Xua - UL)} 

3 PL dut, 

[pGU G + pLCv m {U G 4- (}[ -- 2)(U G -- UL)}] 2 
[35] 

It can be noted that # is real and positive, and when we have no virtual mass force (C~,, = 0), it 
has a large magnitude. This can be seen schematically in figure 7, where for a given Az, point C 
is a typical case with no virtual mass (Cv,, = 0); while the point D includes virtual mass. Thus, we 

find that the stability and efficiency of the numerical solution is determined by the mathematical 
nature of the eigenvalue (tx). In this case,/z has a large positive real part, thus we must have a 
small spatial step (Az) in order to insure an accurate solution. 

NUMERICAL STABILITY CONSIDERATIONS (TRANSIENTS) 

Let us now investiagte the more general case of the effect of virtual mass on the eigenvalues of 

a transient two-phase system. To simplify the analysis, the equations for incompressible 
air/water flow in a constant area duct are used, since the basic classification of the system is not 

affected by these simplifying assumptions. The one -dimensional phasic continuity equations 

are, 

a s  + O[c~ue] = 0,  [36a] 
at Oz 

8(1 - a) F 0[(1 - a)UL] _ O. [36b1 
at az 

The corresponding one-dimensional phasic momentum equations are, 

[ d u o _  aue]  ap 
ape  L - ~ -  ± ue-~z-z ] = - a ~z  - ape g cos 4) + Mc [37] 

rauL_ ouL]= ~ZZ--(1--a)pLgCOS + M L - F ~ ,  (1 - a ) m  [ 7  ~- uL -~-_1 - (1 - ~ )  4, [38] 

where 

M e  = - a[Fa + Fvm ] 

ML = a[Fd + hF,,,] [39b] 

Fvm = p~Co,, f, ou__e auL ~ ue - -  OUG i, ie  OUL 
t at at ~ -  az 

+ w](X - 2)(uc - aue aUL']" I 
uL) -TFz + (l - x)(u~ - uL) -~-z J f "  L 

[39c] 

We note that if we let h = 0 and w = 0, we have the model proposed by Hinze (Hinze 1961), 
in which the virtual mass force (Fv,.) appears only in the vapor phase momentum equation, and 



THE EFFECT OF VIRTUAL MASS ON THE NUMERICAL STABILITY OF ACCELERATING TWO-PHASE FLOWS 291 

the last term in [39c] does not appear. If we let h = 1 but w = 0, we obtain the model proposed 
byWallis (!969), and if we let h = 1, w = 1 and A be arbitrary, we get the most general case, in 
which the virtual mass force is objective (Drew et al. 1979). 

It is convenient to eliminate the pressure gradient (Op/Oz) between [37] and [38]. If we 
multiply [38] by a / ( 1  - a) and subtract it from [37], we obtain, 

:Jut; Ouo 
aOo ["~i- + ua -~-z ] - apL [ OuL ~- uL "~'~ ] 

o o =a(pL-po)gcos ,k-(~_a)Fa+(~_a)Fw-a 1+ _ F.m. [401 

Equations [36] and [40] can be written in matrix form as 

A~+B Ou 
= c, [41] 

where 

U = [Of, UG, UL] T , [42a] 

A= 

° ° 1 
1 0 0 

a32 a33 

[42b] 

with 

a32 m oIpG q-t~(|q-~)Cvnd3L a33 m --DLOI2(I+T~)CvmDL 

and 

with 

B= 
I uo a 0 ] 

- uL 0 (1 - a) 
0 b32 b33 

[42c] 

1732 = ~ [otp6 + a ( l +  ~ ) p L C . . .  ] +  (uo-uL)[wa(l+ la_~ha)(A- 2)oLC~,~ ] 

B 3 3 = - [ aPL U L + °t ( l + ~-ha ) pL Cvmu° ] + ( Uo - UL) [ W°t ( l + ~+ha ) pL Cvm( I - ~ )1" 

The characteristics of [41] are given by, 

dz 
d-t" = rio = l. 2.3) [43] 

where vi are the eigenvalues of the transient system and are given by (Garabedian 1964) 

det[AJ, - B] = 0. [44] 

Combining [42b], [42c] and [44], and expanding out the determinant, we obtain an algebraic 
equation of the form, 
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Y = v - uc~ [46a] 

and 

V = u~ - uL [46b] 

a = ( 1 - a ) { a O o + a [ l +  ah 1 .~ 

b =  wa(1-c~)[1 + (~_ha)](2-A)pLCO,.+ 2aZpL + Ot2[1 + (la--ha)]pLC~,.[1 + w ( l -  A)] 

C = a 2 p L +  wot2[l+(7_h)]pL,Cvm(1-A). 

The roots of the quadratic equation, [45], are, given by 

[47a] 

[47b1 

[47c] 

[ - b - ~/(b 2 - 4ac)] (uo - uL) + uo. [48] 
u =  2a 

Based on physical reasoning, we would expect the system of partial differential equations to be 
hyperbolic (Garabedian 1964). For the system to be hyperbolic, we must have twot real, distinct 
roots (vl and u2). The most general case is that of slip flow, where, V# 0. Thus, in order to have two 
real, distinct roots, [48] implies we must have, 

b 2 - 4ac > 0. [49] 

For Hinze's model (h = 0, w = 0), [49] implies, 

CO,.>4(1-a____) [50] 
Ot 

b = Ot2OL[2 + Co, . ] .  [51] 

[52] 

and [47b] yields 

For Wallis' model (h = 1, w = 0), [49] implies, 

[53] 

CO,. >4(I  - a )  2 
OL 

and [47b] yields, 

b = a2pL[2 + Cv"[(1 - a)] .  

For the most general virtual mass model (h = 1, w = 1 and A arbitrary), [49] implies 

lim CO, > 0 
a-,O 

[541 

tThe third root is dtldz = 0, and results from the assumption of incompressibility. 
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(for A < 2) and [47b] yields 

b= a2pL{2 + ~ ( 2  - A)}. [55] 

Finally, for the case in which we have no virtual mass model (Corn = 0), [47b] yields 

b = 2a 2pL [56] 

and [49] shows that we will always have complex conjugate roots; i.e. 

b 2 - 4 a c  = - 4 a a p L p O ( 1  - -  C t ) .  [57] 

It is interesting to note that for reasonable values of the virtual volume coefficient 
(Cvm = 1/2), and conditions typical of bubbly flow (a -< 0.3), all cases investigated have complex 
conjugate eigenvalues. It is significant, however, that for the most general virtual mass 
acceleration model, [55] indicates that the real part (b[2a) of the eigenvalue is the largest (and 
thus most negative), and the imaginary part is the smallest. In contrast, for the case involving 
no virtual mass term, [56] indicates that the real part (b[2a) is the smallest (and thus the least 
negative), and the imaginary part is the largest of all the cases investigated. Previous in- 
vestigators (Ramshaw & Trapp 1978) have shown that complex characteristics lead to numeri- 
cal stability problems, thus, it is clear why the inclusion of a virtual mass model improves the 
numerical stability and efficiency of both transient and steady two-phase flow problems. 

S U M M A R Y  A N D  C O N C L U S I O N S  

This paper has focused on the effect virtual mass models have on the numerical stability 
and efficiency of accelerating two-phase flows. It has been found, in actual calculations of 
nozzle/diffuser geometries, that the inclusion of appropriate virtual mass models decreases the 
run time by more than an order of magnitude. An investigation of the eigenvalues of the 
mathematical system, and the stability of typical numerical algorithms, such as those due to 
Gear (1971), have shown that appropriate virtual mass models improve stability and 
efficiency by reducing the modulus of the eigenvalues. 

While it is true that the use of other algorithms, which introduce so-called "numerical 
viscosity", can also yield corresponding reductions in run time, virtual mass effects cannot, in 
general, be neglected. In the cases investigated in this study, nozzle/diffuser flows, the effect of 
the virtual mass force on the solution was small, and thus techniques employing "numerical 
viscosity" should yield good results. For other cases of practical concern, such as critical flow, 
which involve large accelerations, one would expect virtual mass effects to be quite important, 
and thus any model which neglects these effects could give large errors. Thus, the inclusion of 
virtual mass effects into the analysis of steady or transient two-phase flow appears to be a 
physically realistic way to improve numerical stability and efficiency, and to achieve accurate 
results in many cases of practical concern. 
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